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A numerical method is proposed based on the analogy between the potential distribution in an 
electrolytic solution and the temperature distribution in a heat-conducting medium. Thus the equation 
of  non-steady-state heat conduction which contains a hypothetical temperature v(x, y, t) is solved 
numerically with appropriate boundary  conditions. In the steady state the distribution of  v(x, y, t) 
corresponds to the distribution of  potential ~bs(x , y) which satisfies Laplace's equation. The method 
is useful not only for conventional electrochemical cells but  also for complicated systems such as a 
bipolar electrode for which boundary  conditions provide neither the potential nor the current density 
at the electrode surface. 
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length of unit cell (see Fig. 1) 
geometric parameters of rectangular cell 
(see Fig. 2a) 
heat capacity of metal 
average electric field in solution or 
average temperature gradient in medium 
total current in unit cell 
faradaic current in unit cell 
by-pass current in solution in unit cell 
cathodic limiting current density 
current density 
normal distance from the electrode 
surface 
polar coordinates 
radius of cylindrical electrode 
surface area of electrode 
time 
cell voltage 

1. Introduction 

Theoretical analysis of the current distribution in elec- 
trolytic cells has been one of the major subjects in 
electrochemical engineering. Potential and current 
distributions are also important in operation of 
batteries and fuel cells and in the prediction and 
prevention of metallic corrosion. Most of the theor- 
etical work so far reported is concerned with the 
solution of the Laplace equation using analytical and 
numerical methods [1-14]. 

We have been interested in the potential and current 
distributions in packed bipolar cells in which conduct- 
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Vm(t) 
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4s(x, y) 

threshold voltage or theoretical decom- 
position voltage 
hypothetical temperature which, for 
t = 0% corresponds to qS~(x, y) 
hypothetical temperature which, for 
t = 0% corresponds to q~m 
complex number defined in Fig. 2c 
Cartesian coordinates 
complex number defined in Fig. 2a 
thermal diffusivity 
complex number defined in Fig. 2b 
cathodic overpotential 
electric conductivity of solution or ther- 
mal conductivity of medium 
potential of metal 
potential of solution 

Subscripts 

i, j, k ordinal numbers of division of x, y, t 

ing particles behave as bipolar electrodes [15-19]. In 
this type of cell it is difficult to solve the Laplace 
equation to obtain the potential distribution in 
solution, since boundary conditions at the surface of 
a bipolar electrode cannot be formulated explicitly. 
Thus the anodic and cathodic areas and the current 
density on the bipolar electrode are not prescribed, 
but must be obtained as the result of calculation. 

In an effort to deal with such a problem, we pro- 
posed to use the differential equation of non-steady- 
state heat conduction, instead of the Laplace equation, 
and found that the method is useful and also applic- 
able to other systems [20, 21]. The present paper 
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Fig. 1. Two-dimensional modal of a bipolar electrode. 

describes the general idea of the method and some 
calculation results. For simplicity only two-dimen- 
sional problems have been considered. 

2. Theory 

In order to describe the principle of calculation we 
consider a special example, that is, a two-dimensional 
model of a packed bipolar cell [18], since extension of 
the method to other systems is straightforward. Let 
us assume that conducting cylinders are arranged 
parallel to each other with a square lattice config- 
uration in an electrolytic solution, as shown in Fig. 1. 
If there is no concentration gradient of ionic species in 
the solution, the potential of solution (as(x, y) satisfies 
the Laplace equation [5]: 

O 2 (/) s (X, y) a2 (as (X, / )  
OX 2 + O/2 -- 0 (1) 

When a sufficiently large field is applied in the sol- 
ution, each cylinder becomes a bipolar electrode; 
anodic and cathodic reactions take place on the 
opposite sides of each cylinder. Then we need to know 
the potential distribution in a unit cell indicated by the 
square in Fig. 1. Boundary conditions at the outer 
limit of the unit cell are written as 

{ 0(as(X' Y) }y = 0 (2) 

Oy = +,,12 

(a s(a/2, y) = (as(- a/2, y) + Ea (3) 

where E is the average electric field in the solution. 
Since the anodic and cathodic current densities on the 
electrode surface are functions of the local potential 
difference between the metal and the solution, the 
following equation holds: 

t r  0rt = f{(am -- (as( x, Y)} (4) 
=0 

Here, n is the normal distance from the electrode 
surface, and ~: is the electric conductivity of the 
solution. Since the total anodic and cathodic currents 
on the bipolar electrode must cancel each other, the 
equation 

{ dS = 0 (5) 
=0 

should hold, where dS is an infinitesimal area of the 
electrode surface and the integration is performed 
over the whole surface of the electrode. In principle 
the potential distribution can be obtained by solving 
Equation 1 under the limiting conditions of Equations 

2-5. However, it is difficult to do so even by a numeri- 
cal method. 

Let us now consider a differential equation of heat 
conduction which describes the time-dependent tem- 
perature distribution in a uniform medium [22]: 

av(x, y, t) f a2v(x, / ,  t) o2v(x, y, t)'( 
at - { 0x 2 + ay 2 ] (6) 

Here, t is the time, v(x, y, t) is the temperature as a 
function of x, y and t, and e is the thermal diffusivity 
of the medium. At steady state (Ov(x, y, O/at = 0), 
Equation 6 becomes the Laplace equation for the 
temperature. Therefore, if v(x, y, t) satisfies appropri- 
ate limiting conditions corresponding to Equations 
2-5, the steady-state distribution of v(x, y, t) can 
simulate the distribution of the potential (as(x, y) 
described above. The electrode is then regarded as a 
metal with infinite thermal conductivity (perfect con- 
ductor). The boundary conditions corresponding to 
Equations 2-4 are written as 

Ov(x, y, t)}y = 0 (7) 
Oy = +_ a/2 

v(a/2, y, t) = v ( - a / 2 ,  y, t) + Ea (8) 

Or(x_, y, t) }. 
t r  On = f{'Vm(t ) -- V(X, y, 1)} (9) 

=0 

where % ( 0  is the temperature of the metal. In this 
case E is regarded as the average temperature gradi- 
ent, and ~c as the thermal conductivity of the medium. 
The limiting condition corresponding to Equation 5 is 
the equation representing the heat balance on the 
metal. Thus, 

Cm dvm(t)dt = f • { Ov(x' y' t) }, dS =0 

where Cm is the heat capacity of the metal. The integral 
on the right hand side of Equation 10 is the total heat 
flux into the metal, which should become zero at 
steady state ( d r  m (t)/dt = 0), representing Equation 5. 
When the hypothetical quantities v(x, y, t) and Vm(/), 
according to Equations 6-10, converge at steady state, 
they are regarded as (as(x, y) and (am, respectively. 

In the case of conventional cells for which the anode 
and the cathode are located separately and a constant 
voltage is applied to them we can assign constant 
values of Vm to the anode and the cathode. If a con- 
stant current is applied, the Vm values of the anode and 
the cathode are expressed by separate equations which 
are similar to Equation 10, but contain the constant 
current term. 

3. Calculation 

The finite difference approximation was used in the 
numerical calculations. When the variables x, y and t 
are digitized with increments Ax, Ay and At, a finite 
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difference expression of Equation 6 is derived as 

Vi,j,k+ 1 - -  'Ui,j, k = ~ ( vi+l ' j 'k - -  2'Ui,j, k -[- Vi_l,j, k 
At \ Ax 2 

vi,j+l, k - 2vi,j, k -}- Vi,j_l,k~ + (1 1) Ay 2 J 
where i, j and k are ordinal numbers corresponding to 
x, y and t, respectively. From Equation 1t, Vi,;k+~ is 
given by 

eAt 
V.j,k+[ : Vi,j, k ~- ~ X  2 (7")i+l,J, k - -  2Vi,j, k n t- Vi_i,j,k) 

aAt 
+ - - ( V i , j + l , k  - -  2 V i i i  -1" Vi,j l,k) (12) 

Ay2 ,, 

The boundary conditions are also written in the form 
of difference equations. Equation 12, together with 
appropriate boundary conditions, enables us to calcu- 
late the v and Vm values at the time step k + 1 from 
the v and v m values at the time step k. Calculation was 
continued until the rate of change in v values at some 
selected points became smaller than a certain level 
(0.0t% for one time step). Convergence was con- 
firmed by a few calculations starting from different 
initial conditions. In the case of a two-dimensional 
model of a packed bipolar cell, polar coordinates (r, 0) 
were adopted instead of Cartesian coordinates (see 
Fig. 1), and the relevant difference equation was used. 

Potential maps (equipotential lines) were drawn by 
interpolating ~b~ between lattice points. Current lines 
were obtained by making contours of the stream func- 
tion which was calculated from q~ values at lattice 
points. Current density at the electrode surface was 
calculated by 

{ c~q~(x, y) }~ (13) 
J = ~ ~n :0 

For  calculation and display of  results an NEC Model 
PC-9801F personal computer was used. 

All the quantities are expressed in the dimensionless 
form, since any units can be used as long as they are 
consistent in the unit system. 

4. Results and discussion 

The primary potential and current distributions have 
been calculated as described above in a rectangular 
cell with an anode and a cathode of different sizes. 
Since the method of conformal mapping can also be 
applied in this case, we can test the validity of  the 
numerical calculation. Figure 2a shows the geometry 
(top view) of  the cell considered. The ratio of the cell 
width to the interelectrode distance is 2: 1, and the 
ratio of the anode to cathode width is also 2:1. The 
cell walls other than the electrodes are insulators. 
Sifice the cell geometry is symmetrical with respect to 
the y axis, only a half of the cell (the square ABCDE) 
need be considered. The half cell width (AC) and the 
interelectrode distance (AE) were divided by 11 and 
12 x 12 lattice points were located at intersections of  
the dividing lines and on the boundaries (electrodes 
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Fig. 2. Geometry of a rectangular celt (a) and corresponding figures 
in the ~ plane (b) and the w plane (c). 

and insulating walls). The odd number (11) was 
adopted for the division in order to avoid the edge of 
the cathode (singular point) as a lattice point. Values 
of vi,j, k were calculated stepwise, and it was found that 
they converged toward a steady state. Figure 3 shows 
equipotential lines and current lines thus obtained. 

The primary potential distribution in a rectangular 
cell can also be obtained by the method of conformal 
mapping [3, 12, 22]. Fletcher Moulton first solved the 
problems of current flow in rectangular conductors 
[23]. Application of the Schwarz-Christoffel theorem 
to the present system leads to an analytical solution 
involving the elliptic integral of the first kind, which 
can be calculated numerically by Simpson's method 
(see Appendix). The solid lines in Fig. 4 show the 
current density distributions at the anode and the 
cathode obtained by the conformal mapping method, 

A n o d e  

Cathode 

Fig. 3. Primary potential and current distributions in the rectangu- 
lar cell. Cell and electrode sizes, b = 0.5, c = 1, d = 1; ~ = 1; 
q~danode) - ~bs(cathode) = 1; I = 0.82 (calculated). Equipotential 
lines are drawn at intervals of a tenth of the unit voltage. The 
separation between adjacent current lines corresponds to a tenth of 
the unit current. 
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Fig. 4. Current  densities at the anode and the cathode obtained by 
the numerical calculation (circles) and by the conformal mapping 
method (solid lines). 

whereas the circles indicate the results of the numeri- 
cal calculation by means of heat transfer equations. A 
good agreement is seen except near the edge of 
the cathode (point B) where the current density 
approaches infinity. 

Figure 5 shows an example of the secondary poten- 
tial and current distributions in the same cell. It is 
assumed that the overpotential at the anode is zero 
and the overpotential at the cathode is a linear func- 
tion of the local current density; that is, the function 
in Equation 4 is expressed as 

f ( ~ m  - -  ~s (  x ,  Y)) --'~ q~m --  (~)s( X, Y) (14)  

Calculation has been performed under the condition 
of constant current where the anode and the cathode 
are regarded as a source and a sink, respectively, of 
constant flow of  heat which corresponds to the same 
current as in the previous calculation of primary dis- 
tribution. It is noted that equipotential surfaces cross 
the cathode surface and that concentration of current 
lines at the edge of the cathode (point B) is reduced 
appreciably. 

We have calculated the potential distribution in the 
two-dimensional model of a bipolar electrode shown 
in Fig. 1. Instead of Equation 11, the difference 
equation based on polar coordinates was used, and r 

A n o d e  

C a t h o d e  

Fig. 5, Secondary potential and current distributions in the 
rectangular cell. dr/c/d:/= 1; I = 0.82 (assumed). Otherwise see the 
caption of Fig. 3. 

4- 

Fig. 6. Potential and current distributions around the bipolar elec- 
trode with no reactions occurring, a = 2; r o = 0.5; E = 0.5; 
~c = 1. Iv = 0 (calculated); I s = 0.35 (calculated). Equipotential 
lines are drawn at intervals of  a twenty-fifth of  the unit  voltage, The 
separation between adjacent current lines corresponds to a twenty- 
fifth of  the unit  current. 

and 0 were digitized with Ar = a/20 and A0 = 10 ~ 
respectively. Since the unit cell is symmetrical with 
respect to the x-axis, calculation was performed only 
in the upper half of the unit cell. Figure 6 shows the 
potential and current lines in the unit cell when no 
reaction occurs on the electrode. This situation arises 
when the applied field is relatively low. The electrode 
behaves as an insulator, and all the current flows 
through the solution. Figure 7 shows the other 
extreme in which the anodic and cathodic reactions 
are the same but proceed in the opposite directions 
with no overpotential. The potential distribution is 
compared to the temperature distribution in a uni- 
form medium in which a perfect heat conductor is 
placed. 

The secondary potential and current distributions 
have been calculated in the case where the anodic and 
cathodic reactions are characterized by Fig. 8. Thus 
the overpotential at the anode is zero, while the 
cathodic current-potential relationship is modelled by 
a step function. Figure 9 shows the potential and 
current lines obtained. It is noted that the cathode 
area is larger than the anode area under the present 
conditions. By repeating similar calculations for 
different values of applied voltage, we can obtain cell 
characteristics (such as the effective electrode area and 

- -  + 

! 
< - -  V = I  

Fig. 7. Potential and current distributions around the bipolar elec- 
trode with reactions of V 0 = 0 and with no overpotentials. See the 
captions of  Fig. 6. I F = 0.55 (calculated); I s = 0.13 (calculated). 
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i 

3.2 >l 

~Fig. 8. A model of current-potential relationship. V~ = 0.2; 
i c = 0.2. 

energy efficiency) as functions of the applied voltage, 
as described previously [18, 19]. 

Various types of current-potential relationships, 
including the Tafel and Butler-Volmer types, can be 
treated similarly by using appropriate functions in 
Equation 4. The present method is applicable not only 
to conventional types of electrochemical cells (elec- 
trolysers and batteries) but also to more complicated 
systems such as corrosion cells in which the anodic 
and cathodic areas are not separated [21]. Further- 
more it may be possible to calculate the tertiary 
current distribution involving diffusion and convec- 
tion by solving Equation 6 and relevant mass transfer 
equations simultaneously. 

Append ix  

When we transform the inside of the rectangle 
ABCDEFGH in the z plane (Fig. 2a) into the upper 
half of the ~ plane (Fig. 2b), the Schwarz-Christoffel 
theorem gives the equation 

dz A 
- (0 < k < 1) (A1)  

de ~/(1 - r - k2~ ') 

where A is a constant which must satisfy the con- 
ditions below. Since r = 0 at z = 0, 

de (A2) A z 
, o  , / ( 1  - - 

The integral is the elliptic integral of the first kind with 
the modulus k and can be rewritten by replacing 

+ 

Fig. 9. Potential and current distributions around the bipolar elec- 
tode with no overpotential at the anode and with the limiting 
current behaviour of the cathode. See the caption of Fig. 6. 
a, anode area; c, cathode area. I v = 0.16 (calculated); I s = 0.29 
(calculated). 

= sin 0 as 

d0 (A3) 
,0 ~ / i -  k '  sin' 0 

The latter form is suitable for the numerical calcu- 
lation by Simpson's method, since the integrand is 
always finite for 0 < 0 < ~/2 (0 < ~ < 1). Inte- 
gration of Equation A1 from the point A (z = 0) to 
the point C (z = c) yields 

d~ = A K  f ,  c A 
J0 # ( 1  - - k ' ;  

(A4) 

where K is the complete elliptic integral of the first 
kind. Integration of Equation A1 from the point C 
(z = c) to the point D (z = c + id)  yields 

d~ 
id = A ~l/k 

31 x/(1 - ~2)(1 - k'r  2) 

dr = iAK" f, iA 
Jo , / ( 1  - ; ' ) { 1  - (1 - 

(A5) 

where K'  is the complete elliptic integral of the first 
kind with the complementary modulus (1 - k2) ~/2. 
From Equations A4 and A5 the equation 

K / K '  = c/d (A6) 

should hold. Since both K and K' are functions of k, 
we can determine k, K and K' from Equation A6. In 
the above calculations we can obtain numerical values 
of the complete elliptic integral either by Simpson's 
method or by a polynominal approximation for the 
integral [24]. Then A is obtained from Equation A4, 
and ~ can be calculated from Equation A2 

= sn(z /A)  (A7) 

Here, sn(z /A)  is Jacobi's elliptic function. Since ~ = fi 
at the point B (z = b), fi is obtained as fi = sn(b/A) .  

Now we transform the upper half of the ( plane into 
the inside of the rectangle ABCDEFGH in the w plane 
(Fig. 2c). The Schwarz-Christoffel theorem yields 

dw B 
- (AS)  

d~ ~/(fi' - ~')(1 - k2~ ')  

which is integrated from the point B to the point D 
giving the equation 

d~ (A9) i1 V B 
, 0  - - ( 1  - kV')  

Since k, fl and V are the known quantities, B can be 
calculated. For b = 0.5, c = 1 and d = 1, the follow- 
ing values are obtained: k = 0.707, fl = 0.765, 
A = 0.539 and fi = 0.479. 

Current density is expressed by 

j = ~ -= K = I 

(A10) 
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Integration of Equation A1 from the point P (z = 
x + id) on the segment DE to the point E (z = /d)  
yields 

+~ d( f 
x A 

J: - C2) l - k 2 r  2 )  

= A f~/k~ d~ (A11) 
x/(1 - ~2)(1 - k2~ 2) 

The current density at the anode can be calculated as 
a function of  x, since j and x are both functions of ~, 
as given by Equations A10 and A l l .  Similarly, the 
current density at the cathode can be obtained from 
Equations A10 and A2 with z = x. 
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